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A continuous one-dimensional fluid as the limit of a lattice 
fluid 
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London SW3 6LX, UK 

Received 9 May 1979 

Abstract. The basic model treated is a linear fluid in which each molecule has a hard core of 
length a and there is an interaction energy c ( r )  when the hard cores of two molecules are 
separated by a distance r, for r < a. In the lattice version the hard core of each molecule 
occupies n sites and there is an interaction energy eq when there are q vacant sites between 
the hard cores of two neighbouring molecules, for q < n. The constant-pressure partition 
function is constructed for a general value of n and the equation of state deduced. It is 
shown that, with the eq appropriately related to the function €(I), the equation of state of the 
lattice fluid tends to that of the continuous fluid when the mesh of the lattice becomes 
infinitely fine ( n  +CO) ,  with the hard-core length kept constant. For rectangular-well 
interactions it is shown that the difference between the equation of state of the continuous 
fluid and that of the lattice fluid for any value of n depends solely on hard-core effects. 

Three models displaying the water-like property of a maximum on density isobars in a 
low-pressure range are treated. Density isobars for lattice models with various values of n 
are compared with those of the continuous fluid. The relative magnitude of hard-core and 
attractive interaction effects in the lattice ‘error‘ is considered for a parabolic well fluid. 

1. Introduction 

Although lattice fluid models (sometimes called lattice gases) and continuum fluid 
models are concerned with the same type of physical system, detailed comparison 
between them is rather rare. However the lattice model can be regarded as a kind of 
‘finite difference’ approximation to the continuous case and it seems likely that, as the 
mesh of the lattice is reduced for molecules of a given size, results for the lattice fluid will 
approach those for the corresponding continuous fluid. A convenient measure of mesh 
fineness is n, where a pair of molecules at closest approach have their centres on 
nth-neighbour sites of the lattice. The lattice fluid equivalent to the Ising model 
corresponds to n = 1, first-neighbour exclusion models to n = 2, and so on. There have 
been a number of treatments with n > 1, both for molecules with hard-core repulsion 
only and for molecules with an interaction energy at closest approach. The lattices have 
been mainly two-dimensional and either series or matrix methods have been used (see 
the review by Runnels 1972). Kaye and Burley (1974a, b) have discussed a two- 
dimensional first-neighbour exclusion lattice model with more extended attractive 
interactions. However, for two- and three-dimensional systems the methods used for 
n > 1 are approximate and it is prohibitively difficult to consider more than a small value 
of n. Again, there are no exact results for the corresponding continuous models. 
Accordingly it seemed interesting to investigate a one-dimensional lattice model where 
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660 G M Bell 

exact results can be obtained for any value of n and the approach to the continuous fluid 
for large n considered. This is the subject of the present paper. It should be mentioned 
that Hoover et a1 (1964) discussed a non-interacting gas on a one-dimensional lattice 
for general n and also compared the n = 1 case for a lattice fluid with a square-well 
interaction with the corresponding continuous fluid for Boltzmann factor values 0.1 and 
10. 

In 8 2 of the present paper a one-dimensional lattice fluid with a hard core occupying 
n sites and an interaction field extending over a further n sites is treated. A 
constant-pressure partition function is derived for a general value of n and an equation 
of state giving the length of the assembly as a function of the (one-dimensional) pressure 
and temperature is deduced. (An Appendix gives an alternative method based on a 
combinatorial formula and the canonical ensemble.) In § 3 a Takahashi continuous 
fluid with a hard core of length a and an interaction field’extending over a further 
distance a is introduced and a method of approximating by a lattice model described. It 
is shown that, as n tends to infinity and the lattice site separation to zero in such a way 
that the core and interaction lengths remain constant, the lattice equation of state tends 
to that of the continuous fluid. In 8 4 it is shown that for a rectangular-well interaction 
the difference between the lattice and continuous expressions for assembly length at 
given pressure and temperature depends only on hard-core effects. It is also shown that 
this result can be generalised to a multiple rectangular-well interaction provided that n 
is chosen appropriately. 

Although there are no phase transitions in a one-dimensional system with short- 
range interaction it is possible to represent cooperative phenomena depending on 
short-range order, such as the anomalous density maximum in water. To obtain 
water-like behaviour there must be a low density configuration which has lower energy 
than any denser configurations, leading to regions of open structure stable at low 
pressures. In 3 5 three models having this characteristic, but with different forms of 
interaction energy, are considered. Lattice approximations for different values of n are 
compared numerically with continuous fluid results for all three models. In the third 
(parabolic well) model the contributions to the difference between the assembly lengths 
for the continuous and n = 2 lattice cases from the hard-core repulsion and the 
attractive ‘well’ interaction respectively are compared. Bell (1969) has previously 
compared water-like one-dimensional lattice and continuous models but the lattice 
model was confined to n = 1 and did not represent a first approximant to the continuous 
fluid in the sense of the present paper. 

2. Hard-core lattice fluid with interaction of limited range 

One-dimensional lattice and continuous fluids have been reviewed by Thompson 
(1972), but in the lattice case explicit solutions are given only when the interactions are 
confined to pairs of molecules on adjacent sites. In the present section an equation of 
state will be derived for a one-dimensional lattice fluid where each molecule has a hard 
core occupying n sites and a potential field extending over a number of further sites. 
Two molecules with no other molecule between them will be termed ‘neighbouring’. It 
will be supposed that interaction is confined to neighbouring pairs and that such a pair 
has interaction energy when there are q vacant sites between the two molecules. Let 
us denote the distance between two adjacent lattice sites by b and the hard-core length 
nb by a. Then, if attention is focused on the centres of neighbouring molecules, the 
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foregoing assumptions imply that the interaction energy is infinite when the centres are 
separated by a distance of less than a and equal to when they are at a distance a + qb 
for q 3 0. 

The constant-pressure partition function for the one-dimensional lattice fluid will 
now be derived. We denote the number of molecules in the assembly by M and the 
number of vacant sites between the rth and ( r  + 1)th molecules in order along the lattice 
by 4,. The numbers of vacant sites between the first and Mth molecules respectively and 
the boundaries are denoted by qo and qM. There is assumed to be no interaction energy 
between these molecules and the boundaries. Then the configuration energy E, and the 
length L of the assembly for given values of qo, q l , .  . . , qM-l, qM are given by 

M-1 M M 

r = l  r = O  r = O  
Ec = 1 E q ,  L = Mnb + 1 q,b = M a  + 1 q,b. 

The constant-pressure partition function for the assembly of M molecules at absolute 
temperature T and (one-dimensional) pressure p is then 

(kT)-'  being denoted by p where k is Boltzmann's constant. Here the inner summation 
is over all possible positions of the molecules in length L. It is now useful to define 

(3) = e - B ~ b  = ,-OpaIn 

Then, using (l), equation (2) may be written in the form 

However, the sum over all configurations and over all values of L may also be effected 
by summing over all values of each qr ( r  = 0, . . . , M )  from 0 to 00. We can then write 

The two factors (1 --e)-' in 4 result from summation from 0 to 00 over the possible 
numbers of vacant sites between an end molecule and a boundary. The summation in 
each factor 4 is over the possible numbers of vacant sites between the molecules of a 
neighbouring pair. 

We shall now suppose that eq = 0 for q 3 n. There is thus no interaction between 
molecules with centres at distance 2a or greater, where a is the hard-core length. Since 
two molecules with another molecule between them must have their centres at least 2a 
apart, the restriction of interaction to neighbouring molecules becomes automatic and 
our assumptions are self-consistent. For q 3 n, the terms in 4 become a geometrical 
progression and 

The mean length occupied by the assembly at temperature T and (one-dimensional) 
pressure p is given by 
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A mean length per molecule is defined by 

1, = L / M  (8) 

where the subscript n represents the number of lattice sites occupied by each hard core 
and is a measure of the closeness of the lattice mesh. In the thermodynamic limit, when 
M+cu,, the contribution of the boundary terms in Q, to 1, becomes negligible and 
substitution of ( 5 )  in (7) yields 

(9) I ,  = +-'a In d/ap = bga In d/ay, 
using the definition (3) of 5. Substituting (6) in (9), 

where a = nb is the hard-core length and it can be seen that I ,  + a as p + 00 (5 + 0). This 
is the required equation of state giving 1, in terms of T and p .  A little manipulation 
yields the useful alternative form 

Instead of the Boltzmann factors e-"R we now have Mayer factors e-"q-- 1 and when 
eq = 0 for all q the third term on the right-hand side of (1 1) disappears. Hence the first 
two terms give the mean length per molecule for a lattice gas with hard-core repulsion 
only. It is useful to define a number density p by 

p = M a / L  = all,. (12) 
Hence p is the ratio of the number of molecules on a Iattice of given length to the 
number L//a present at closest packing ( p  = CO) and the largest value of p is 1, attained at 
closest packing. 

An alternative combinatorial method of deriving the equation of state is given in the 
Appendix. 

3. The continuous one-dimensional (Takahashi) fluid as a limit 

We now consider an assembly of rod-like molecules of length a, which can be placed on 
a line in any way, provided that no rods overlap. Two rods with centres at a distance 
a + r apart have interaction energy E ( r ) ,  where c ( r )  = 0 for r 3 a. The last condition 
ensures that the interaction is confined to neighbouring molecules. (As in the previous 
section, a pair of molecules is termed 'neighbouring' if there is no other molecule 
between them.) The function e(r)  is bounded in the domain O s r < a  and is also 
continuous, except possibly at a finite number of points. If r = c  is a point of 
discontinuity it is assumed that the limits E ( C  -0) and E ( C  + 0) both exist. The equation 
of state of such an assembly can be approximated by that of a lattice model like that of 
the previous section with each hard core occupying n sites and distance b L- a / n  
between adjacent sites. The interaction energies eq between neighbouring molecules 
separated by q vacant lattice sites will be prescribed by the relation 

1 , - ( q + l ) b  

E(r) dr q = o ,  1 , .  . . , n - 1 .  
~q = 1 J,, 
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It will now be shown that as n + 00 (i.e. b + 0), for fixed length a, the equation of state 
for the lattice fluid tends to that for the continuous fluid. First, introduce a set of 
quantities E :  where E :  = E(qb) if E(r) is continuous at r = qb and E :  = E ( @  +0) if E(r) is 
not continuous at r = qb. Now, from the definition (13), e-@'qlies between the greatest 
and least values of e-pfir) in the interval qb d r S qb + b. Also, in any range where E(r) is 
continuous, is also continuous and hence uniformly continuous. Now the domain 
in which E(r) # 0 can be divided into a finite number of ranges where E(r) is continuous, 
separated by points of discontinuity. Hence for any value of 8, however small, a value of 
b can be found such that 

(14) 
for all q except where there is a discontinuity in the interval qb G r s qb + b. For an 
interval where there is a discontinuity the left-hand side of (14) is bounded since we 
have assumed that E(r) is bounded. Hence, since the number of discontinuities is finite 
and b + O  as n +CO, 

le-pfq - e--P'h < 1 8  

JO 

where the last relation of (1 5 )  is a consequence of the standard theory of the Riemann 
integral. Similarly 

and it is easy to show that 

Hence, from (10) above, keeping nb = a fixed as n increases, we have 

This is the required result since I ,  in (18) is the length per molecule for the continuous 
model introduced at the beginning of this section. The expression for I ,  can be obtained 
from that given by Lieb and Mattis (1966) or by Bell (1969) for a Takahashi gas, if the 
interaction between neighbouring molecules is restricted to a range equal to the 
hard-core length. It may be transformed to 

1 
Pp 

J; (Ppr - 1) e-ppr(e-PE(r)- 1) dr 
1 + pp J," e-ppr(e-Pf ") - 1) dr  

l ,=a+-+ 

which is the limit of the form given for 1, in equation (11) above as n -+CO, with nb = a 
kept fixed as n increases. 

The same limit would be attained as n +CO and the proof of limiting properties 
would be easier if the E :  were used instead of the c4 defined by (13) as interaction 
energies in the lattice approximation to the continuous fluid. However, for certain cases 
the approximation would be much worse for small n values. It may be noted that, while 
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the restriction of the interaction range to r < a is physically self-consistent in that it 
automatically prevents interaction between pairs of molecules with a third molecule 
between them, it is possible to have an interaction of range h > a  and to postulate that it 
acts only between nearest neighbours. It is then necessary to replace a by h in the 
integrals of (19). To derive lattice approximations the formalism of 9 2 above up to and 
including equation ( 5 )  could be applied. A corresponding result to equation (1 1) would 
be obtained with the summations taken from 4 = 0 to 9 = n1 where nlb  is the smallest 
multiple of b greater than or equal to h. The continuous case would again be the limit of 
the lattice approximation as b + 0 with a fixed. With interactions of infinite range the 
limiting arguments would be rather more complicated. Falk (1974a, b) has considered 
a continuous fluid of Ising spins with a neighbouring pair interaction of infinite range. 

(20) 
where we have shown that AI,, + 0 as n +a. For a continuous fluid with hard-core 
repulsion only, e(r)=O for r>O and the last term on the right-hand side of (19) 
vanishes. Similarly, for a lattice fluid with hard-core repulsion only, the last term on the 
right-hand side of (11) vanishes. Then 

It is useful to define the difference 

A & ( T  P) = U T  P )  - Ll(T P ) ,  

using the definition (3) of 5. For the general model, 

Al,, = Al',hc) + Alpt) 

where Al',h"' is given by (21) and Al!nt) is the contribution of the interaction field outside 
the hard core and is the difference between the last terms on the right-hand sides of 
equations (19) and (11) respectively. 

4. Multiple rectangular-well models 

It will now be shown that there is a class of models where Alpt), as defined by equation 
(22), is zero although there are interactions in addition to the hard-core repulsion. It is 
convenient to list some preliminary results. Using integration by parts for the second 
relation it is easy to show that 

( p p r  - 1) e-*pr dr = c e-pPc- d e-opd. (23) ICd pP ICd e-6Pr dr  = e-fiPC- e-6Pd 

The corresponding lattice sums are 

( t +  1) e - b ( t + l ) n l n  2 [q - (4  + 1)515q = s 5 s  - ( t  + I)[(+' = s e-psaln- 
q = s  

The first relation of (24) is just the summation of a geometrical progression while the 
second can easily be obtained by writing 

E4 - (4 + 1)515" = 4.9 - (4  + 1)5"'. 
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Now introduce a rectangular-well model defined for the continuous case by 

E ( r )  = --U (0 c r < a) ,  E ( r )  = 0 ia  r>,  (25) 

where U is a constant. Substitution into (19) and the use of (23) with c = 0 and d = a 
immediately gives 

In the lattice approximation (13) gives 

Eq = - U  ( q = O , l ,  . . * , n - l ) ;  E q  = 0 ( q 2 n ) .  (27) 

Substitution into (11) and the use of (24) with s = 0, t = n - 1 together with the 
definition (3) of 5 and the relation bn = a gives 

Comparison with (26) shows that for the rectangular-well model there is no contribu- 
tion to AI, from interactions apart from the hard-core repulsion and thus 

0, (29) AI, = AILhc), A/!"') = 

where the hard-core contribution AI?'' is given by equation (21) above. 

continuous case, 
The foregoing result can be generalised to a multiple-well model where, in the 

E ( r )  = -U1, 0 c r < cl;  

. . .  E ( r )  = -U,, c,-~ c r < a (30) 

where u l , .  . . , U ,  are constants. Substitution into (19) and the use of (23) for each 
energy interval yields 

E ( r )  = -242, c1 s r < c2; 

where, in the summations, co and c, are identified with 0 and a respectively. Now 
suppose that the ratios between the intervals c1, c2 ,  . . . , c, are rational (e.g. m = 2, 
c1 =?a, c2 = a).  Then we can put 1 

c k  = (uk /v )a ,  U = U, (32) 

where u l ,  v2,. . . , U, are a set of integers with no common factor. The continuous 
model can now be approximated by a lattice model if we put n = uno where no is a 
positive integer. Then (13) yields 

where uo is defined as 0. Substitution into (1 1) now yields an expression for I ,  with the 
same third term as in the expression for 1, given by (31). Hence equation (29) is 
applicable in the multiple-well model. In fact, the single-well model treated at the 
beginning of this section is just the particular case m = 1. 
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Although we have used the term ‘multiple rectangular well’ to give a ‘picture’ of the 
interaction potential the foregoing derivation is not affected if some or all of the Kk are 
negative in sign. Change of sign of any U!,  changes the sign of the corresponding Mayer 
factor. 

5. Waber-like models 

We now consider models where, in certain temperature ranges, the density increases 
with temperature at constant pressure. *For such water-like behaviour the interactions 
between the molecules in the model must simulate hydrogen bonding in real water by 
giving rise to configurations of low density which have lower energy than closer-packed 
configurations. Hence regions of open structure are stable at low temperatures and 
pressures but are progressively broken down by thermal motion as the temperature 
increases. This counteracts the usual increase of volume with temperature and leads to 
the phenomenon of negative thermal expansion. At high enough temperatures the 
regions of open structure have largely disappeared and the thermal behaviour becomes 
normal. Thus there are density maxima on certain isobars. Previous work (for instance 
Bell 1969, 1972, Bell and Lavis 1970a, b, Perram 1971, Bell and Sallouta 1975) 
confirms that anomalous thermal behaviour is confined to isobars in the pressure range 
where the open strw ture is stable at T = 0. The three models to be discussed are as 
follows. 

5.1. Hard-shoulder model 

For the continuous case the interaction energy in this model is defined by: e ( r )  = w > 
0’0 =z r < a ; c ( r )  = 0, r > U.  In addition to the hard-core repulsion there is thus an 
additional finite repulsive energy w for molecules whose centres are separated by 
distances between a and 2a. By considering the enthalpy per molecule at T == 0 it can 
be shown that an open structure in which the neighbouring molecular centres are 
separated by distance 2a is stable when pa < w. The equation of state for the 
continuous case is (26), with U replaced by - w. Lattice approximations are possible for 
all values of n and the equation of state is (28), again with U replaced by - w. It is not 
difficult to show that for both the continuous and lattice models 1 + 2 a ( p  +;) as T + 0 
for pa  < w while l a a  ( p  a 1) as T+O for pa > w. 

The model is an extremely simple one, but rather unsatisfactory in that maxima 
appear on isobars only in the upper part of the ‘open structure’ pressure range, just 
below p = w/a. In figures 1 and 2 lattice approximation density isobars are compared 
with the continuous case for pa = 0 . 9 ~  and pa = 1 . 1 ~  respectively. At the lower 
pressure negative thermal expansion can be seen but at the pressure greater than w / a  
thermal behaviour is normal. 

5.2. Double-well model 

For the continuous case the interaction energy in this model is defined by: c ( r )  = -ulr  
O s r C r a ;  E(r)=-u2, Za:sr<aa;  c(r)=O, a s r  where uz>ul>O. The ‘bonding’ 
which results in the open structure is represented by the deeper part of the well, which 
gives an interaction energy of --u2 to pairs of molecules with centres at distances 
between Sa and 2a. From enthalpy considerations it can be shown that at T = 0 an open 

1 1 
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5- 

n 

P 

Figure 1. Hard-shoulder model: density/reduced temperature isobars for reduced pressure 
p a / w  = 0.9. n denotes number of sites occupied by the hard core of one molecule; the 
continuous fluid corresponds to n = W. 

0 1  

I-I- I I 

k T / w  
0 1  0 2  0 3  O L  

Figure 2. As figure 1 for pa/ w = 1 5  1. The broken curve represents the continuous hard-rod 
fluid without interaction. 
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structure with the centres of neighbouring molecules at a distance of $a is stable for 
pa < 2(u2 - ul). This is a model of the type discussed in 0 4 above and the equation of 
state for the continuous case is given by (31) with m =2,  c1 =$a ,  c 2 =  a. Lattice 
approximations are possible for even values of n and the equation of state is given by 
(29) in conjunction with (31). For both the continuous and lattice cases 1 -*$a ( p  -* 3 )  as 
T+Oforpa<2(uz-u1) while l + c z ( p + l )  as T+Oforpa>2(u2-ul) .  

Although the open structure must be of lower energy than the close-packed 
structure for water-like behaviour to occur (i.e. in the present case u2 > ul) results are 
more satisfactory for models in which the gap is not too large (Bell and Sallouta 1975). 
Accordingly the ratio u1 /u2  =$was chosen for calculation, which gives a pressure range 
(O, fuz /a)  for stability of the open structure at T = 0 .  Maxima occur on 
density/temperature isobars over a larger fraction of this range than is the case for the 
hard-shoulder model. In figure 3 lattice approximation isobars are compared with the 
continuous model for pa = 0 . 3 ~ ~  and a range of negative thermal expansion can be seen 
in all cases. 

O 2 I  0 1  

9 

Figure 3. Double-well model; u l / u z  = i: density/reduced temperature isobars for reduced 
pressure pa/uz = 0.3. n denotes number of sites occupied by the hard core of one molecule; 
the continuous fluid corresponds to n = 00. 

5.3. Parabolic-well model 

The continuous version of this model, in which bonding is represented by a parabolic 
well separated by a non-zero distance from the hard core, was introduced by Bell 
(1969). For the calculations performed here the interaction energy is given by: E(r) = 0, 
0 d r d fa, a d r ;  E(r) = -(8v0/a2)(2r - a)(a  - r ) ,  $a d r d a. The minimum energy is 
-vo at r =:a. Owing to the continuity of the potential function the behaviour of the 
system at T = 0 is more complicated than that of the two models described above. It can 
be deduced from equation (7.9) of Bell (1969) that an open structure is stable at T = 0 
for pa < 1.373~0. From equation (7.8) of Bell (1969), the distance between the centres 
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of neighbouring molecules in the open structure, which is the limit of 1, as T + 0, varies 
from 1 . 7 5 ~  at p = 0 to 1 . 7 0 7 ~  at p = 1.373uo/a. For pa > 1 . 3 7 3 ~ ~  the molecules are 
close-packed with I ,  = a at T = 0. It can be shown that there is a maximum on all 
isotherms in the range pa < 1 . 3 7 3 ~ ~ .  Lattice approximations are possible for even 
values of n but it should be noted that in this case it is essential to use the eq defined by 
equation (13)  above rather than the e:. There are differences between the ground states 
of lattice approximations and continuous fluid which are not present in the other two 
models. For instance, in the lattice approximation for n = 2, el  = 0 and e2 = -?v0, so 
that the distance between the centres of neighbouring molecules in the open structure is 
$a and the latter is stable at T = 0 for pa <$U,. 

Density/temperature isobars derived from the lattice approximation for several 
values of n are compared with the continuous fluid isobar for pa = uo in figure 4 and for 
pa =?uo in figure 5. For pa = uo density maxima occur for both the lattice and 
continuous models but pa = $uo is above the pressure range for negative thermal 
expansion in all cases. The parabolic-well fluid is not of the 'rectangular-well' type 
discussed in 8 4 above. Hence there is a non-zero contribution Al~"'' from the attractive 
interaction in addition to the contribution AILhc) from the hard-core repulsion to the 
difference Al, between the length per molecule 1, in the continuous model and the 
length 1, in the lattice approximation for given n. In table 1 l,, A12 and the ratio of the 
attractive contribution Al!"" to A12 are given for a number of temperatures at the two 
pressures pa = uo and pa = ZOO. 

2 

3 

6.  Discussion 

From the three models of water-like type studied it can be seen that in important 
respects results derived from lattice approximations are qualitatively similar to those 
from the continuous fluid. Negative thermal expansion occurs in a similar pressure 

P 0 5  

0 3  

0 2 t  

01 0 2  0 3  O L  0 5  0 6  0 7  0 8  0 9  
kT/v, 

Figure 4. narabolic-well model: density/reduced temperature isobars for reduced pressure 
p a l o o =  1. n denotes number of sites occupied by the hard core of one molecule; the 
continuous fluid corresponds to n =Co.  
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06- 

0 5 -  

0 L-  

03- 

0 2 -  

O10 d l  d 2  013 d i  d 5  016 017 d 8  d 9  1 1'1 12 

P 

A 

k T / v ,  

Figure 5. As figure 4 for p a / v o  = 2. 

Table 1. 

palvo = 1 p a / u o  = 2 

0.1 1.6893 
0.2 1.6088 
0.3 1.5718 
0.4 1.5729 
0.5 1.6010 
0.75 1.7460 
1.0 1.9487 
1.5 2,4192 
2.0 2.9171 

0.2687 0.6405 
0.2587 0.3998 
0.2415 0.2399 
0.2322 0.1422 
0.2278 0.0823 
0.2257 0.0145 
0.2279 -0.0060 
0,2333 -0.0124 
0,2371 -0.0104 

1.3601 
1,4087 
1.4312 
1.4532 
1.4790 
1.5649 
1,6802 
1,9795 
2.3260 

0,2089 0,6818 
0.2098 0.4219 
0.2123 0.2684 
0,2161 0,1850 
0.2191 0.1341 
0,2217 0.0574 
0.2226 0.0159 
0.2407 0.0475 
0.2740 0.1444 

range for the lattice and continuous models while above this range the density decreases 
monotonically with temperature along each isobar. Nevertheless it can be seen from 
figures 1-5 that there are considerable quantitative differences between lattice and 
continuous fluid isobars for small values of n where n is the number of sites occupied by 
the hard core in the lattice model. For the parabolic-well model, where away from the 
hard core the interaction energy is a continuous function of the molecular separation, 
the lattice and continuous model isobars resemble each other in shape but there is some 
shift along the density axis. In all three models lattice results for n = 8 or 10 are quite 
close to the continuous case. 

For the 'hard-shoulder' and 'double-well' models the difference between lattice and 
continuous fluid values for the assembly size at given pressure and temperature is 
entirely due to hard-core terms. For the 'parabolic-well' model the situation is more 
complicated and the relative magnitudes of contributions to this difference from 
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hard-core repulsion and attractive interaction respectively varies strongly with 
temperature. In the neighbourhood of the density maximum the hard-core contribu- 
tion is several times larger than that of the attractive interaction. 

If a long-range attractive interaction of Van der Waals type is incorporated into a 
one-dimensional model phase transitions can occur. Wilson and Bell (1977) compared 
an n = 1 lattice model with a continuous model for a fluid with hard-core repulsion, a 
finite repulsive interaction outside the hard core and a long-range attraction. They 
found a triple point in both the lattice and continuous cases. It is hoped to present 
results on the convergence of the lattice approximation to the continuous case for 
one-dimensional fluids with long-range attraction in a further communication. 

Appendix 

We now develop an alternative method, based on a combinatorial formula, for treating 
the model of § 2 above. It is supposed that there are M molecules on the N, sites of a 
linear lattice and for convenience the lattice is converted into a ring by supposing that 
the first and last sites are adjacent. Defining a ‘neighbouring pair’ as two molecules with 
no other molecule between them, there are then exactly M neighbouring pairs. The 
hard core of each molecule occupies n sites and, if N% denotes the number of 
neighbouring pairs with q vacant sites between the hard cores, then, according to the 
assumptions of Q 2, the interaction energy E, and the total number of interacting pairs 
NMM are given by 

n-1 n-1 

q=o q=o 
NMM= NbL. E,= c 

The number of non-interacting neighbouring pairs (i.e. the number with n or more 
vacant sites between the hard cores) is then M - NMM. Now denote the number of ways 
of placing the M molecules on the N, lattice sites with given values of N E L  for 
q = 0 , 1 , .  . . , n - 1 by g(N,, M, N g L ) .  The given values of the N!&L must satisfy the 
inequality 

q=o 

since each hard core occupies n sites and there must be at least n vacant sites for each 
non-interacting pair. The difference between the two sides of the inequality (A.2) 
represents the number of ‘free vacant sites’ which can be placed between the molecules 
of any non-interacting pair. Accordingly we define 

n - 1  

q=o 
Nf=N, -nM-  qN!&-n(M-NMM). (A.3) 

The configuration number g will now be calculated by building up the required 
distribution in two steps. The first step is to place M molecules on a ring lattice of 
N,- N f  sites in such a way that, for q = 0, 1, . . . , n - 1, there are a given number N?JM 
of neighbouring pairs with q vacant sites between the two hard cores. From the 
definition (A.3) of Nf  there must now be exactly n vacant sites between the two hard 
cores for each of the remainingM-NMM neighbouring pairs and all these pairs are thus 
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identical. Hence the number of ways of achieving a distribution of this type is 

('4.4) 
M !  

( M - N M M ) !  l-I&;N&!. 

The next step is to place the remaining N f  sites between the molecules of the M - NMM 
non-interacting pairs which can be done in 

(Nf + M - N M M  - 1) ! 
Nf!(M-NMM-l)!  

ways. This is the number of ways of placing N f  indistinguishable objects into M - NMM 
compartments. Since M is assumed to be large and the logarithm of the configuration 
number will be used we can replace M - NMM - 1 by M - NMM in (AS). Then, forming 
the product of the expressions (A.4) and (AS), we have 

where NMM and Nf  are defined by equations (A. 1) and (A.3) respectively. 
By using (A.6) in equation (2) above and summing first over Nf and then over the 

N!$L the constant-pressure partition function can be again obtained. However we 
shall instead use the canonical ensemble and the method of the maximum term. The 
partition function can be written 

(PF) = 9 ( N s ,  M, N!$M. . . N&G))  = g e-PEc. (A.7) 
N& N$L 

Using (A.l) ,  (A.6) and Stirling's formula 

In 9 =In g -PEc 

= M In M + (Nf  + M  - NMM) In (Nf+M - NMM) - Nf In Nf 
n-1 

q = o  
- 2 ( ~ - ~ ~ ~ ) l n  ( M - N ~ ~ ) -  1 N g L ( l n N k L + P e q ) .  (A.8) 

The equilibrium values of N&L, NMM and Nf will be denoted by NMM and Nf 
respectively and are obtained by maximising (A.6). Hence, noting (A.3) and the second 
relation of (A.l), 

= -Peq-lnN&L--(n -4) l n N f + ( n  - q - l )  In ( N f + ~ - N M M )  
+ 2 1 n ( ~ - N , M ) = 0 ,  q = O , l ,  . . . ,  n - 1 .  64.9) 

The configurational Helmholtz free energy F, is given by 

Fc(M7 L, T )  = -kT In 9 ( N s ,  M, NE!) (A.lO) 

where L = Nsb is the length of the system, b being the distance between adjacent lattice 
sites. The (one-dimensional) pressure p is then given by 

(A.11) 
kT Nf  + M - N M M  -_  aFc kT a h 9  

p = - ( ~ ) ~ , T = b ( ~ ) ~ ~ & -  b In Nf  
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From (A.ll) ,  using the definition of 5 given by equation (3) above, 

(A.12) 

Substitution into (A.9) then gives the following result for the number NE& of 
interacting pairs with centres separated by n + q lattice spacings: 

N(4) MM - - 5-" (1 - 5 ) ( ~  - N M M ) t q  e-'',. (A.13) 

Summing (A.13) from q = 0 to q = n - 1 gives the relation 
n-1  

q = o  
NMM = e-" (1 - [ ) (M - NMM) c e-"q(', 

from which it may be deduced that 

(A.14) 

M-NMM=~-1(1-5)-1.$2nM (A.15) 

where 4 is the function defined in equation (6) of § 2 above. Substitution of (A.15) into 
(A.12) and (A.13) yields 

(A.16) Nf = 4 -I( 1 - 5)-252"+1M, N$L = 4 - 1 5 n + q  e - - P ~ q ~ .  

Equations (A.15) and (A.16) enable us to write the equation of state: 

Ns=nM+n(M-NMM)+Nf+ 1 qN&& 
n-1 

q = o  

q-1 

n =O 
= M ( n  + 4-1[ n52"(1- e)-'+ 52"+'(1 -e)-'+ 5" e+q I). (A.17) 

Since the length per molecule In is equal to bN,/M, equation (A.17) immediately yields 
equation (10) of 0 2 above. Hence we have verified that the canonical ensemble, using 
combinatorial and maximum term methods, yields the same equation of state as the 
constant pressure ensemble. 
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